Abstract

The amorphous carbon layer (ACL), used as the hardmask for the etching of nanoscale semi-conductor materials, was etched using O2/CHF3 in addition to O2/N2 using pulsed dual-frequency capacitively coupled plasmas, and the effects of source power pulsing for different gas combinations on the characteristics of the plasmas and ACL etching were investigated. As the etch mask for ACL, a patterned SiON layer was used. The etch rates of ACL were decreased with the decrease of pulse duty percentage for both O2/N2 and O2/CHF3 due to decrease of the reactive radicals, such as F and O, with decreasing pulse duty percentage. In addition, at the same pulse duty percentage, the etch selectivity of ACL/SiON with O2/CHF3 was also significantly lower than that with O2/N2. However, the etch profiles of ACL with O2/CHF3 was more anisotropic and the etch profiles were further improved with decreasing the pulse duty percentage than those of ACL with O2/N2. The improved anisotropic etch profiles of ACL with decreasing pulse duty percentage for O2/CHF3 were believed to be related to the formation of a more effective passivation layer, such as a thick fluorocarbon layer, on the sidewall of the ACL during the etching with O2/CHF3, compared to the weak C-N passivation layer formed on the sidewall of ACL when using O2/N2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.