Abstract
SummaryData centers consume an enormous amount of energy to meet the ever‐increasing demand for cloud resources. Computing and Cooling are the two main subsystems that largely contribute to energy consumption in a data center. Dynamic Virtual Machine (VM) consolidation is a widely adopted technique to reduce the energy consumption of computing systems. However, aggressive consolidation leads to the creation of local hotspots that has adverse effects on energy consumption and reliability of the system. These issues can be addressed through efficient and thermal‐aware consolidation methods. We propose an Energy and Thermal‐Aware Scheduling (ETAS) algorithm that dynamically consolidates VMs to minimize the overall energy consumption while proactively preventing hotspots. ETAS is designed to address the trade‐off between time and the cost savings and it can be tuned based on the requirement. We perform extensive experiments by using the real‐world traces with precise power and thermal models. The experimental results and empirical studies demonstrate that ETAS outperforms other state‐of‐the‐art algorithms by reducing overall energy without any hotspot creation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Concurrency and Computation: Practice and Experience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.