Abstract

Energy efficiency has become one of the major concerns for today's cloud datacenters. Dynamic virtual machine (VM) consolidation is a promising approach for improving the resource utilization and energy efficiency of datacenters. However, the live migration technology that VM consolidation relies on is costly in itself, and this migration cost is usually heterogeneous as well as the datacenter. This paper investigates the following bi-objective optimization problem: how to pay limited migration costs to save as much energy as possible via dynamic VM consolidation in a heterogeneous cloud datacenter. To capture these two conflicting objectives, a consolidation score function is designed for an overall evaluation on the basis of a migration cost estimation method and an upper bound estimation method for maximal saved power. To optimize the consolidation score, a greedy heuristic and a swap operation are introduced, and an improved grouping genetic algorithm (IGGA) based on them is proposed. Lastly, empirical studies are performed, and the evaluation results show that IGGA outperforms existing VM consolidation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.