Abstract
Server consolidation technique plays an important role in energy management and load-balancing of cloud computing systems. Dynamic virtual machine (VM) consolidation is a promising consolidation approach in this direction, which aims at using least active physical machines (PMs) through appropriately migrating VMs to reduce resource consumption. The resulting optimization problem is well-acknowledged to be NP-hard optimization problems. In this paper, we propose a novel merge-and-split-based coalitional game-theoretic approach for VM consolidation in heterogeneous clouds. The proposed approach first partitions PMs into different groups based on their load levels, then employs a coalitional-game-based VM consolidation algorithm (CGMS) in choosing members from such groups to form effective coalitions, performs VM migrations among the coalition members to maximize the payoff of every coalition, and close PMs with low energy-efficiency. Experimental results based on multiple cases clearly demonstrate that our proposed approach outperforms traditional ones in terms of energy-saving and level of load fairness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.