Abstract

Leandro Fontanetti do Nascimento Pagina ix ABSTRACT NASCIMENTO, L. F. Study and development of micronanostructurated composite based carbon nanotubes as catalytic support for organic reactions. 2011. 134 f. Tese (Doutorado) Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto da Universidade de Sao Paulo, 2011. One of the main frontiers in the development of heterogeneous catalysis involves the use of graphitized carbon supports as vectors for the modification of the electronic structure of the catalysts utilized in catalytic reactions. In this sense, carbon nanotubes (CNTs) are promising materials because their morphology, surface defects, curvature, and hollow geometry allow for good dispersion and stabilization of nanoparticles (NPs), which culminates in specific interactions. CNTs can have a wide distribution of diameters, with the presence of defects (vacancies, pentagons) for this reason, they can be doped and then interspersed with species that affect the electron density of their walls, which can be functionalized with a variety of molecules. As a result, new properties that influence the catalytic activity of NPs arise. Despite their potential application, use of CNTs as particulate matter. This is because can propose problems to their application, due to their agglomeration. This is because the dispersion of NPs and their electronic properties can be affected, and problems contamination of the reaction, and flow limitations appear. An alternative for the use of CNTs in heterogeneous catalysis is the utilization of CNT-based materials with micrometric nanostructured surface. These are composite materials whose properties depend on the nature of the CNTs and the substrate. Various of the properties of CNTs can be maintained in composites, such as fixed clustering, shape of the surface of the micrometric material, which can be easily removed from the reaction medium and used in columns without compromising the flow. This work was based on a catalytic activated carbon (AC) support and CNTs, resulting from the catalytic decomposition of ethanol, which resulted in a micronanostructured composite (CNT/AC). Ruthenium metal NPs prepared by microemulsion and containing different amounts of ruthenium were supported onto the CNT/AC composite. The catalytic behavior of this new material was investigated for the oxidation of benzyl alcohol and hydrogenation of cinnamaldehyde. The obtained results were compared with those achieved with a commercial catalyst. Positive results were obtained for the oxidation of benzyl alcohol, with high substrate conversion and product selectivity having been achieved for a lower ruthenium load than the one present in the commercial catalyst (99% conversion and selectivity of 100 %. toward benzaldehyde. As for the hydrogenation of cinnamaldehyde, 45%, hydrocinnamaldehyde, hydrocinnamyl alcohol and cinnamyl alcohol, selectivities of 25, 18, and 2%, respectively. The micronanostructured catalyst was characterized by Raman spectroscopy, which indicated the presence of second-order bands in the range of 2500-3200 cm, due to the presence of CNTs. After incorporation of the ruthenium NPs, there was a shift in the G band located at 1580 cm of about 2 eV, indicating a charge transfer process between the NPs and the CNTs. The results from N2 absorption indicated the mesoporous nature of the catalyst. The concentration of ruthenium catalysts present in the samples was measured by atomic absorption spectrometry. Ruthenium mass ratios of 1.3, 2.3, and 3.2% in relation to the composite, were detected. The composites were tested in various reuses experiments. There was low lixiviation of the NPs and low detachment of CNTs from the substrate. These data were confirmed

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call