Abstract

Fuel-cell electrode catalysts with improved electrochemical properties have been prepared by dispersing Pt nanoparticles onto carbon nanotubes (CNT) using a chemical vapor deposition (CVD) method. (Trimethyl)methylcyclopentadienyl platinum (MeCpPtMe 3) has been used as a Pt precursor in the CVD process and the CVD conditions have been optimized to disperse small Pt particles onto the CNT. Pt particles synthesized by CVD have a relatively uniform size of approximately 1 nm, which is substantially smaller than in the case of a commercial Pt/carbon black catalyst (⩽4.5 nm) prepared by wet impregnation. The dispersion of Pt, estimated by CO chemisorption, is also more than 14% greater than the commercial catalyst with these smaller particles. The electrochemically active surface area (ESA), measured by cyclic voltammetry (CV), and the long-time durability of the surface area of Pt/CNT prepared by CVD are higher than those of the commercial catalyst. Consequently, the single cell performance of the former catalyst is superior to that of the latter one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.