Abstract

We examined chronic effects of 17beta-estradiol (E(2)beta) on the responses of isolated rat anterior cerebral small arteries to vasoactive substances with special reference to endothelial function. Female Sprague-Dawley rats were separated into four groups: (1) sham-operated group (Sham), (2) sham-operated plus E(2)beta treated group (Sham+E), (3) ovariectomized group (OVX), (4) ovariectomized plus E(2)beta treated group (OVX+E). 5-Hydroxytryptamine (5-HT) (10(-10)-10(-3) M) and U46619 (10(-15)-10(-8) M) induced concentration-dependent contractions in the cerebral small arteries. The 5-HT- and U46619-induced contractions were not affected by pretreatment with 3 x 10(-5) M N(omega)-nitro-L-arginine methyl ester (L-NAME). No significant difference in high potassium (80 mM)- and the agonists-mediated contractions was observed among the four groups. Administration of acetylcholine (ACh) (10(-9)-10(-3) M) and sodium nitroprusside (SNP) (10(-8)-10(-3) M) caused dose-related relaxations in the cerebral small arteries precontracted by 10(-8) M U46619. Chronic treatment with E(2)beta caused a significant potentiation of the ACh-induced relaxations in the Sham+E and OVX+E groups. The dose-response curve for ACh in the OVX group was quite similar to that obtained with the Sham group. The ACh-induced relaxation was reduced significantly by pretreatment with 3 x 10(-5) M L-NAME, and an additional treatment with 10(-3) M L-arginine reversed significantly the L-NAME-induced inhibition. The removal of endothelial cells produced a significant reduction of the ACh-induced relaxation. Indomethacin (10(-5) M) did not alter the ACh-induced relaxation. The findings suggest that E(2)beta potentiates ACh-induced endothelium-dependent relaxation in rat anterior cerebral arteries and that the potentiation may be, in part, mediated by increasing production and release of endogenous NO from the endothelial cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.