Abstract
We investigated the estrogenic activity of various environmental pollutants (xenobiotics), in particular the xenoestrogen o,p-DDT, and compared their effects with those of endogenous estrogens, phytoestrogens, and mycoestrogens on estrogen receptor binding capacity, induction of estrogen end products, and activation of cell proliferation in estrogen-sensitive human breast cancer cells in monolayer culture. We also quantified the levels of phytoestrogens in extracts of some common foods, herbs, and spices and in human saliva following consumption of a high phytoestrogen food source (soy milk) to compare phytoestrogen abundance and bioavailability relative to the reported xenoestrogen burden in humans. Results show that natural endogenous estrogens, phytoestrogens, mycoestrogens, and xenoestrogens bind estrogen receptor (ER) in intact cells, but demonstrate marked differences in their ability to induce end products of estrogen action and to regulate cell proliferation. All of the different classes of estrogens stimulated cell proliferation at concentrations that half-saturated ER, but only some classes were able to induce estrogen-regulated end products. Genistein, a common phytoestrogen found in soy foods, differed from the xenoestrogen DDT in its effects on cell proliferation and ability to induce estrogen-regulated end products. Moreover, we found that many of the foods, herbs, and spices commonly consumed by humans contain significant amounts of phytoestrogens, and consumption of soy milk, a phytoestrogen-rich food, markedly increases the levels of phytoestrogens in saliva. In conclusion, our in vitro results predict that a diet high in phytoestrogens would significantly reduce the binding of weak xenoestrogens to ER in target tissues in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.