Abstract

Electrical stimulation of the medial amygdala (AMY) elicited antidromic action potentials in neurons in the preoptic area (POA) and the lateral septum (LS) of 36 urethane-anesthetized ovariectomized female rats, which were either treated with estrogen o not treated. The extracellular potentials from the two sites showed similar characteristics, with the exception of the sensitivity to estrogen: they had latencies between 3 and 35 ms. Thresholds were as low as 100 microA. The mean relative refractory period was 2.2 ms. The peak-to-peak amplitudes of the positive-negative biphasic potential ranged from 1.0 mV to 12.0 mV. Estrogen had site-specific effects on parameters of antidromic activation in the POA. Estrogen-treated rats had a significantly higher threshold (937 vs 664 microA) and a longer refractory period (2.5 vs 2.1 ms) than the ovariectomized rats (P < 0.05 for each). The effects were absent in the LS. Selective cutting of the stria terminalis diminished the AMY-induced antidromic responses in the POA and LS. Electrical stimulation of the stria blocked the AMY-induced antidromic potentials by collision. Thus, estrogen-sensitive POA efferents as well as non-estrogen-sensitive LS efferents project to the AMY via the stria terminalis. Reductions in axonal excitability would inhibit neural conduction and transmission. Estrogen may therefore reduce the AMY inputs from the POA, without affecting those from the LS. Such alterations in the neural impulse flow may underlie estrogen-dependent neuroendocrine or behavioral regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.