Abstract

The metabolism of endogenous estrogens, estradiol and estrone, and the irreversible binding of estrogens to cellular macromolecules have been examined and compared in subcellular microsomal and in intact hepatocyte preparations. In studies with rat liver microsomal preparations containing estradiol, an NADPH-generating system, and denatured DNA, the irreversible binding of radiolabeled steroid metabolite(s) to the microsomal proteins was 3.26 nmoles/mg protein in 1 hr (S.D. 0.39; 7.9% of total steroid) while binding to DNA was found to be 0.288 nmole/mg DNA/mg protein (S.D. 0.025; 0.39% of total steroid). No significant difference was observed between microsomal preparations from untreated, phenobarbital-treated or 3-methylcholanthrene-treated rats. Irreversible binding to proteins was also demonstrated in the intact hepatocyte cell incubations. After 2-hr incubations of estradiol with hepatocytes, 5.9% (S.D. 1.4%) of the steroid(s) was irreversibly associated with cellular proteins (approximately 1.43 pmoles/mg/min). Analysis of the organic-soluble metabolites demonstrated the presence of the catechol estrogens and their metabolites, 2-hydroxyestradiol, 2-hydroxyestrone, 2-methoxyestradiol, and 2-methoxyestrone. Estrone and estriol were also identified. The aqueous-soluble materials isolated from hepatocyte incubations contained glucuronide, sulfate, and apparent thioether conjugates, as determined by liberation from estrogen metabolites by treatment with β-glucuronidase, sulfatase, and Raney nickel. Thus, extensive primary and secondary metabolism of estrogens occurs in intact hepatocyte incubations. Furthermore, irreversible binding of estrogens to cellular proteins occurs in these intact cells having demonstrated conjugative pathways of metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call