Abstract

Ishikawa endometrial cancer cells express the estrogen receptor (ER), and this study investigates aryl hydrocarbon receptor (AhR) expression and inhibitory AhR–ER crosstalk in this cell line. Treatment of Ishikawa cells with the AhR agonist [ 3H]2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) gave a radiolabeled nuclear complex that sedimented at 6.0 S in sucrose density gradients, and Western blot analysis confirmed that Ishikawa cells expressed human AhR and AhR nuclear translocator (Arnt) proteins. Treatment of Ishikawa cells with 10 nM TCDD induced a 9.7-fold increase in CYP1A1-dependent ethoxyresorufin O-deethylase (EROD) activity and a 10.5-fold increase in chloramphenicol acetyltransferase (CAT) activity in cells transfected with pRNH11c containing an Ah-responsive human CYP1A1 gene promoter insert (−1142 to +2434). Inhibitory AhR–ER crosstalk was investigated in Ishikawa cells using E2-induced cell proliferation and transcriptional activation assays in cells transfected with E2-responsive constructs containing promoter inserts from the progesterone receptor and vitellogenin A2 genes. AhR agonists including TCDD, benzo[a]pyrene (BaP) and 6-methyl-1,3,8-trichlorodibenzofuran, inhibited 32–47% of the E2-induced responses. In contrast, neither estrogen nor progesterone inhibited EROD activity induced by TCDD in Ishikawa cells, whereas inhibitory ER-AhR crosstalk was observed in ECC-1 endometrial cells suggesting that these interactions were cell context-dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.