Abstract
Estrogen replacement increases both the number of dendritic spines and the density of axospinous synapses in the hippocampal CA1 region in young rats, yet this is attenuated in aged rats. The estrogen receptor-alpha (ER-alpha) is localized within select spines of CA1 pyramidal cells in young animals and thus may be involved locally in this process. The present study investigated the effects of estrogen on the ultrastructural distribution of ER-alpha in the CA1 of young (3-4 months) and aged (22-23 months) Sprague Dawley rats using postembedding immunogold electron microscopy. Within dendritic spines, most ER-alpha immunoreactivity (IR) was seen in plasmalemmal and cytoplasmic regions of spine heads, with a smaller proportion within 60 nm of the postsynaptic density. In presynaptic terminals, ER-alpha-IR was clustered and often associated with synaptic vesicles. Significant effects of both aging and estrogen were observed. Quantitative analysis revealed that nonsynaptic pools of ER-alpha-IR within the presynaptic and postsynaptic compartments were decreased (35 and 27%, respectively) in the young estrogen-replaced animals compared with those that received vehicle. Such localized regulation of ER-alpha in response to circulating estrogen levels might directly affect synaptic signaling in CA1 pyramidal cells. No estrogen treatment-related differences were observed in the aged animals. However, 50% fewer spines contained ER-alpha in the aged compared with young hippocampus. These data suggest that the decreased responsiveness of hippocampal synapses to estrogen in aged animals may result from age-related decrements in ER-alpha levels and its subcellular localization vis-à-vis the synapse. Such a role for spinous ER-alpha has important implications for age-related attenuation of estrogen-induced hippocampal plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.