Abstract

Estrogen stimulates pulsatile secretion of GH, via mechanisms that are largely unknown. An untested hypothesis is that estradiol (E₂) drives GH secretion by amplifying interactions among GH-releasing hormone (GHRH), somatostatin (SS), and GH-releasing peptide (GHRP). The design comprised double-blind randomized prospective administration of transdermal E₂ vs placebo to healthy postmenopausal women (n=24) followed by pulsatile GHRH or SS infusions for 13 h overnight with or without continuous GHRP2 stimulation. End points were mean concentrations, deconvolved secretion, and approximate entropy (ApEn; a regularity measure) of GH. By generalized ANOVA models, it was observed that E₂ vs placebo supplementation: i) augmented mean (13-h) GH concentrations (P=0.023), GHRH-induced pulsatile GH secretion over the first 3 h (P=0.0085) and pulsatile GH secretion over the next 10 h (P=0.054); ii) increased GHRP-modulated (P=0.022) and SS-modulated (P<0.001) GH ApEn; and iii) did not amplify GHRH/GHRP synergy during pulsatile GH secretion. By linear regression, E₂ concentrations were found to be positively correlated with GH secretion during GHRP2 infusion (P=0.022), whereas BMI was found to be negatively correlated with GH secretion during GHRH (P=0.006) and combined GHRH/GHRP (P=0.015) stimulation. E₂ and BMI jointly determined triple (combined l-arginine, GHRH, and GHRP2) stimulation of GH secretion after saline (R²=0.44 and P=0.003) and pulsatile GHRH (R²=0.39 and P=0.013) infusions. In summary, in postmenopausal women, E₂ supplementation augments the amount (mass) and alters the pattern (regularity) of GH secretion via interactions among GHRH, SS, GHRP, and BMI. These outcomes introduce a more complex model of E₂ supplementation in coordinating GH secretion in aging women.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call