Abstract

Estradiol affects hippocampal-dependent spatial memory and underlying structural and electrical synaptic plasticity in female mice and rats. Using estrogen receptor (ER) alpha and beta knockout mice and wild-type littermates, we investigated the role of ERs in estradiol effects on multiple pathways important for hippocampal plasticity and learning. Six hours of estradiol administration increased immunoreactivity for phosphorylated Akt throughout the hippocampal formation, whereas 48 h of estradiol increased immunoreactivity for phosphorylated TrkB receptor. Estradiol effects on phosphorylated Akt and TrkB immunoreactivities were abolished in ER alpha and ER beta knockout mice. Estradiol also had distinct effects on immunoreactivity for post-synaptic density 95 (PSD-95) and brain derived-neurotrophic factor (BDNF) mRNA in ER alpha and beta knockout mice. Thus, estradiol acts through both ERs alpha and beta in several subregions of the hippocampal formation. The different effects of estradiol at 6 and 48 h indicate that several mechanisms of estrogen receptor signaling contribute to this female hormone's influence on hippocampal synaptic plasticity. By further delineating these mechanisms, we will better understand and predict the effects of endogenous and exogenous ovarian steroids on mood, cognition, and other hippocampal-dependent behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call