Abstract
Estimating covering functionals of convex bodies is an important part of Chuanming Zong’s program to attack Hadwiger’s covering conjecture, which is a long-standing open problem from convex and discrete geometry. In this paper, we transform this problem into a vertex p-center problem (VPCP). An exact iterative algorithm is introduced to solve the VPCP by making adjustments to the relaxation-based algorithm mentioned by Chen and Chen in 2009. The accuracy of this algorithm is tested by comparing numerical and exact values of covering functionals of convex bodies including the Euclidean disc, simplices, and the regular octahedron. A better lower bound of the covering functional with respect to 7 of 3-simplices is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.