Abstract

Semi-functional linear regression models are important in practice. In this paper, their estimation is discussed when function-valued and real-valued random variables are all measured with additive error. By means of functional principal component analysis and kernel smoothing techniques, the estimators of the slope function and the non parametric component are obtained. To account for errors in variables, deconvolution is involved in the construction of a new class of kernel estimators. The convergence rates of the estimators of the unknown slope function and non parametric component are established under suitable norm and conditions. Simulation studies are conducted to illustrate the finite sample performance of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.