Abstract
We develop and study in the framework of Pareto-type distributions a class of nonparametric kernel estimators for the conditional second order tail parameter. The estimators are obtained by local estimation of the conditional second order parameter using a moving window approach. Asymptotic normality of the proposed class of kernel estimators is proven under some suitable conditions on the kernel function and the conditional tail quantile function. The nonparametric estimators for the second order parameter are subsequently used to obtain a class of bias-corrected kernel estimators for the conditional tail index. In particular it is shown how for a given kernel function one obtains a bias-corrected kernel function, and that replacing the second order parameter in the latter with a consistent estimator does not change the limiting distribution of the bias-corrected estimator for the conditional tail index. The finite sample behavior of some specific estimators is illustrated with a simulation experiment. The developed methodology is also illustrated on fire insurance claim data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.