Abstract
In this work, we investigate the linear dynamic interactions between fluctuations in arterial CO2 that occur during normal breathing, and the BOLD fMRI signal. We cast this problem within a systems-theoretic framework, where we employ functional expansions for the estimation of the impulse responses in large regions of interest, as well as in individual voxels. We also implement classification schemes in order to identify different brain regions with similar cerebrovascular reactivity characteristics. Our results reveal that it is feasible to obtain reliable estimates of cerebrovascular reactivity curves from resting-state data and that these curves exhibit considerable variability across different brain regions that may be related to the underlying anatomy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.