Abstract

Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Walking ground reaction forces are among the key parameters necessary for gait analysis. However, these parameters are commonly measured using force plates or instrumented treadmills which are expensive and bulky and can only be used in a controlled laboratory environment. Despite the importance of real-life gait measurement, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge, mainly due to the lack of a practical and cost-effective wearable technology for ground reaction force measurement. This paper presents a methodology to estimate the total walking ground reaction force GRFvt in the vertical direction using data from a single inertial measurement unit. Correlation analysis of the vertical acceleration of different body segments with GRFvt indicated that the 7th cervical vertebrae is one of the best locations for the sensor. The proposed method improves the accuracy of the state-of-the-art GRFvt estimation by 25%, by utilising the time-varying ratio of the vertical acceleration of the human body centre of mass and measured C7 vertical acceleration. Results of this study showed that the proposed method estimated consistently the GRFvt in both indoor and urban outdoor environment, with a 4–8% peak-to-peak normalised root mean square error.

Highlights

  • Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports

  • McDonald and Zivanovic (2013) and Bocian, et al, (2016) proposed a methodology, called ‘Constant Coefficient Method’ (CCM) here, in which the vertical acceleration measured at the 7th cervical vertebra (ẍ v,C7 (t)) can be used to estimate the total vertical jumping and walking ground reaction forces (GRFv (t)), respectively

  • This study shows that this assumption might be simplistic and aims to advance the state-of-the-art in estimation of GRFv (t) from measured body acceleration by proposing an alternative methodology, termed ‘Scaled Acceleration’ (SA) method, to estimate GRFv (t) with higher accuracy and versatility

Read more

Summary

A NOTE ON VERSIONS

The version presented here may differ from the published version. You are advised to consult the published version for pagination, volume/issue and date of publication. Professor of Vibration Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK

Method
Results
Conclusions
Conflict of interest statement
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call