Abstract

A novel method to estimate unsteady aerodynamic force coefficients from pointwise velocity measurements is presented. As opposed to other existing methodologies, time-resolved full velocity fields are not required. The methodology is based on a resolvent-based reduced-order model which requires the mean flow to obtain physical flow structures and pointwise measurement to calibrate their amplitudes. A computationally affordable time-stepping methodology to obtain resolvent modes in non-trivial flow domains is introduced and compared with previous existing matrix-free and matrix-forming strategies. The technique is applied to the unsteady flow around an inclined square cylinder at low Reynolds number. The potential of the methodology is demonstrated through good agreement between the fluctuating pressure distribution on the cylinder and the temporal evolution of the unsteady lift and drag coefficients predicted by the model and those computed by direct numerical simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call