Abstract

The five channel meteorological imager (MI) on-board the geostationary Communication, Ocean, and Meteorological Satellite (COMS) of Korea has been operationally used since April 2011. For a better utilization of the MI data, a rigorous characterization of the four infrared channel data has been conducted using the GSICS (Global Space-based Inter-Calibration System) approach with the IASI (Infrared Atmospheric Sounding Interferometer) on-board the European Metop satellite as the reference instrument. Although all four channels show the uncertainty characteristics that are in line with the results from both the ground tests and the in-orbit-test, there shows an unexpected systematic bias in the water vapor channel of MI, showing a cold bias at the warm target temperature and a warm bias with the cold target temperature. It has been shown that this kind of systematic bias could be introduced by the uncertainties in the spectral response function (SRF) of the specific channel which is similar to the heritage instruments on-board GOES series satellite. An extensive radiative transfer simulation using a radiative transfer model has confirmed that the SRF uncertainty could indeed introduce such a systematic bias. By using the collocated data set consisting of the MI data and the hyperspectral IASI data, the first order correction value for the SRF uncertainty is estimated to be about 2.79 cm-1 shift of the central position of the current SRF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.