Abstract
Context and Background: The product of the electromagnetic (EM) wave’s power P times its period τ, i.e. Pτ, is the amount of energy conserved in EM wave’s absorption in matter. Whether Pτ is the amount of energy conserved in the emission of EM waves from matter is not assessed. Motivation: In this research, we perform a computational study to explore the ability of Pτ to represent the amount of energy conserved in EM wave’s emission from matter. Hypothesis: Since the magnitude of the power P of emitted EM waves computed through Larmor’s formula for a rotating dipole is excessively small, we alternatively hypothesize that Pτ and the law of conservation of energy can lead to a realistic estimation of P. Methods: We estimate the power PAME of the anomalous microwave emission (AME), a well-characterized radiation generated in the interstellar medium (ISM) by spinning dust grains, and one possible source of contamination of the cosmic microwave background (CMB). For our estimation of PAME, we assume the AME to be generated in a molecular cloud mostly populated by spinning silicate nanoparticles (SSNs) or polycyclic aromatic hydrocarbon (PAH) spinning dust grains. Indeed, SSNs and PAHs are listed among the most probable sources of AME, and their characteristics are well-known. We discriminate between realistic and non-realistic values of PAME based upon the magnitude of two parameters that depend on PAME: the significant distance z, and the time of photon production T. The parameter z is the space interval from the spinning dust grain within which the spinning dust grain’s electric field is effective. Results: Using the information available for AME, SSNs and PAHs, we estimate the power PAME using both Larmor’s formula and Pτ. We compare and comment the results obtained for z and T. Conclusions: Our study highlights the effectiveness of Pτ over Larmor’s formula in providing a realistic value of PAME. This finding might have consequences in quantum technology of single photon detection and production.
Highlights
Is Pτ, i.e. the product of light’s power P times its period τ, the amount of energy conserved in the emission of electromagnetic (EM) waves from matter? This outstanding question is not addressed in the current scientific literature
We estimate the power PAME of the anomalous microwave emission (AME), a well-characterized radiation generated in the interstellar medium (ISM) by spinning dust grains, and one possible source of contamination of the cosmic microwave background (CMB)
The PAME from Pτ and the law of conservation of energy is of the same order of magnitude of that of spinning silicate nanoparticles (SSNs), so are z and T. These findings suggest that small variations of composition, size and shape of the spinning dust grains do not affect significantly the characteristics of the AME generated by spinning dust grains
Summary
Is Pτ, i.e. the product of light’s power P times its period τ, the amount of energy conserved in the emission of electromagnetic (EM) waves from matter? This outstanding question is not addressed in the current scientific literature. From the computational and the experimental points of view, one of the difficulties in studying EM wave’s emission lies in finding sources of EM waves with a well-determined emitted power and frequency ν (or period τ = ν−1) In response to this difficulty, in our computational study we investigate the anomalous microwave emission (AME) radiated by spinning silicate nanoparticles (SSNs) or polycyclic aromatic hydrocarbon (PAH) spinning dust grains in the interstellar medium (ISM). We determine PAME from both routes, and discriminate whether the obtained values of PAME are realistic or not through the values of two PAME-dependent parameters These two parameters are: z, the significant distance from a spinning dust grain within which its electric field is effective, and T, the time of photon production. Discussing the values of z and T will enable us to draw conclusions on the ability of PAMEτAME to represent the amount of energy conserved in the emission of AME from spinning dust grains
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have