Abstract

The spatial orientation of the fringe has been demonstrated to be a key point in the reliable phase demodulation from a single n-dimensional fringe pattern regardless of the frequency spectrum of the signal. The recently introduced general n-dimensional quadrature transform (GQT) makes explicit the importance of the fringe orientation in the demodulation process. The GQT is a quadrature operator that transforms cos phi into -sin phi--where phi is the modulating phase--and it is composed of two terms: an orientation factor directly related to the fringe's spatial orientation and an isotropic n-dimensional generalization of the one-dimensional Hilbert transform. We present a method for the determination of the orientation factor in a general n-dimensional case and its application to the demodulation of a single fringe pattern by the GQT. We have tested the algorithm with simulated as well as real photoelastic fringe patterns with good results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.