Abstract
Mechanical strength of a nanotube bundle has been measured by using quartz glass enclosed-purified SWNTs as the specimen. These specimens were prepared by fast stretching quartz glass tube that contained purified nanotube bundles, at temperatures ranging from 900 to 1490 °C. The maximum average critical load was 42.3 kg/mm2 for the specimen prepared at 900 °C. However, at temperatures higher than 900 °C, the critical load value decreased and became almost equal to that of quartz glass at 1490 °C. It was believed that the decrease in the critical load value at temperatures higher than 900 °C was due to the partial conversion of nanotubes into amorphous carbon. Since the cross-sectional area used in arriving at the critical load value was that of nanotube and the quartz glass, the cross-sectional area ratio of the quartz to that of the nanotube suggested that the mechanical strength of nanotube would be two orders of magnitude higher than the value reported here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.