Abstract
A model (algorithm) has been developed for estimating the average size of a metal grain and the spread of its magnitude (standard deviation) according to experimental values of attenuation coefficients due to scattering of longitudinal waves on grains determined by the ratio of the amplitudes of bottom echoes (of the first and higher order) at three frequencies using a table of values of the difference between experimental and calculated values of attenuation coefficients. Computer modeling of the pulse amplitude differences of the 1st and 3rd bottom echoes for normal probe models with nominal frequencies of 5.0, 7.5 and 10.0 MHz and two variants of grain parameters used to test the specified algorithm has been carried out. The results obtained make it possible to choose the optimal operating frequency for metal control by a normal probe based on the estimated value of attenuation of longitudinal waves, determined by the average size of metal grains and the value of its magnitude spread.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.