Abstract
Accurate estimation of Soil Organic Carbon (SOC) is vital for assessing soil fertility, health, and carbon sequestration. Visible and Near-Infrared (Vis-NIR) spectroscopy has gained popularity worldwide for SOC estimation due to its cost-effectiveness and environmental benefits. However, inconsistencies arise from varying preprocessing techniques and regression models applied across different datasets and regions. Few studies explore combinations of spectral preprocessing, modeling algorithms, and resampling techniques. This study presents the first SOC estimation using Vis-NIR spectroscopy in the Red River Delta, Vietnam. We assessed estimation performances incorporating fifteen preprocessing techniques, four regression models, and three resampling methods to identify the most effective strategies. Standard Normal Variate (SNV) emerged as the top preprocessing technique, while Partial Least Squares Regression (PLSR) demonstrated the highest accuracy with minimal discrepancies between calibration and validation. Regarding resampling methods, repeated cross-validation (repeatedcv) proved most robust, with simple cross-validation as an alternative. By utilizing SNV, PLSR, and repeatedcv, we achieved the first successful Vis-NIR spectroscopy-based SOC estimation in the Red River Delta and Vietnam. This approach satisfied stringent statistical criteria for predictive models, yielding validation performance metrics of R2 = 0.740, RMSE = 0.166, RPD = 2.337, and RPIQ = 2.321. Our findings highlight the importance of optimizing preprocessing, regression, and resampling techniques for accurate Vis-NIR spectroscopy-based SOC prediction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have