Abstract

A mixture approach to clustering is an important technique in cluster analysis. A mixture of multivariate multinomial distributions is usually used to analyze categorical data with latent class model. The parameter estimation is an important step for a mixture distribution. Described here are four approaches to estimating the parameters of a mixture of multivariate multinomial distributions. The first approach is an extended maximum likelihood (ML) method. The second approach is based on the well-known expectation maximization (EM) algorithm. The third approach is the classification maximum likelihood (CML) algorithm. In this paper, we propose a new approach using the so-called fuzzy class model and then create the fuzzy classification maximum likelihood (FCML) approach for categorical data. The accuracy, robustness and effectiveness of these four types of algorithms for estimating the parameters of multivariate binomial mixtures are compared using real empirical data and samples drawn from the multivariate binomial mixtures of two classes. The results show that the proposed FCML algorithm presents better accuracy, robustness and effectiveness. Overall, the FCML algorithm has the superiority over the ML, EM and CML algorithms. Thus, we recommend FCML as another good tool for estimating the parameters of mixture multivariate multinomial models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.