Abstract
Superconducting integrated circuits should be operated at low temperature below a half of their critical temperatures. Thermal heat from a bias resistor could rise the temperature in Josephson junctions, and would reduce their critical currents. In this study, we estimate the temperature in a Josephson junction heated by a bias resistor at the bath temperature of 4.2K, and introduce a parameter β that connects the thermal heat from a bias resistor and the temperature elevation of a Josephson junction. By using β, the temperature in the Josephson junction can be estimated as functions of the current through the resistor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have