Abstract
The drying rate of a mushroom undergoing microwave-vacuum (MV) drying (MVD) was controlled by moisture dissipation and was dependent on vacuum pressure levels. The main objective of this work was to develop artificial neural network (ANN) model to predict moisture ratio of MV-dried mushrooms. One-hidden-layer feed-forward ANN models were trained and validated with experimental data. The Levenberg-Marquardt algorithm was utilized in regulating the ANN model weights and biases. Inputs for ANN models were vacuum pressure and drying time. Output from ANN models was moisture ratio at a given drying time. Reduced chi-square (X 2) and root mean square error (RMSE), and residual sum of squares (RSS) of the results from ANN models were calculated and compared with those of a modified Page's model (an experimental-based mathematical model), which is commonly used in the literature. The X 2, RMSE, and RSS of the ANN model (2.272 x 10 -5, 4.023 x 10 -3, and 3.204 x 10 -3, respectively) were found to be lower than those of the modified Page's model (6.692 x 10 -4, 2.561 x 10 -2, and 12.98 x 10 -2, respectively). These results indicate that the feed-forward ANN model represented the drying characteristics of mushrooms better than the modified Page's model. Therefore, the ANN model could be considered as a better tool for estimation of the moisture content of mushrooms than by the modified Page's model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.