Abstract
Multivariate isotonic regression theory plays a key role in the field of statistical inference under order restriction for vector valued parameters. Two cases of estimating multivariate normal means under order restricted set are considered. One case is that covariance matrices are known, the other one is that covariance matrices are unknown but are restricted by partial order. This paper shows that when covariance matrices are known, the estimator given by this paper always dominates unrestricted maximum likelihood estimator uniformly, and when covariance matrices are unknown, the plug-in estimator dominates unrestricted maximum likelihood estimator under the order restricted set of covariance matrices. The isotonic regression estimators in this paper are the generalizations of plug-in estimators in unitary case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.