Abstract

Conventional methods for the estimation of the ultimate lateral pile load capacity are typically based on certain expressions of the lateral soil resistance pu and assumed distributions of the lateral soil pressure mobilized along the pile embedded depth. When soils are nonhomogenous, however, the application of conventional methods represents significant difficulties due to the nonlinear and irregular variation of pu with depth. In this study, a cone penetration test (CPT)-based methodology for the estimation of the ultimate lateral pile load capacity Hu was proposed, which can take full account of entire soil profile through the CPT cone resistance qc. A normalized correlation between qc and pu was proposed with correlation parameters corresponding to different existing methods. In order to validate the proposed CPT-based methodology, case examples of laterally loaded piles in various soil conditions were prepared and used to compare values of Hu from original and proposed methods. Calibration chamber test results were adopted to verify the proposed methodology. Field lateral pile load tests were performed to further verify the proposed CPT-based method for field conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call