Abstract

Continuous kinematics estimation from surface electromyography (sEMG) allows more natural and intuitive human-machine collaboration. Recent research has suggested the use of multimodal inputs (sEMG signals and inertial measurements) to improve estimation performance. This work focused on assessing the use of angular velocity in combination with myoelectric signals to simultaneously and continuously predict 12 joint angles in the hand. Estimation performance was evaluated for five functional and grasping movements in 20 subjects. The proposed method is based on convolutional and recurrent neural networks using transfer learning (TL). A novel aspect was the use of a pretrained deep network model from basic joint hand movements to learn new patterns present in functional motions. A comparison was carried out with the traditional method based solely on sEMG. Although the performance of the algorithm slightly improved with the use of the multimodal combination, both strategies had similar behavior. The results indicated a significant improvement for a single task: opening a bottle with a tripod grasp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.