Abstract

In this work, we study a general approach to the estimation of single particle tracking models with time-varying parameters. The main idea is to use local Maximum Likelihood (ML), applying a sliding window over the data and estimating the model parameters in each window. We combine local ML with Expectation Maximization to iteratively find the ML estimate in each window, an approach that is amenable to generalization to nonlinear models. Results using controlled-experimental data generated in our lab show that our proposed algorithm is able to track changes in the parameters as they evolve during a trajectory under real-world experimental conditions, outperforming other algorithms of similar nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.