Abstract

Canopy-intercepted light, or photosynthetically active radiation, is fundamentally crucial for quantifying crop biomass development and yield potential. Fractional photosynthetically active radiation (PAR) (fPAR) is conventionally obtained by measuring the PAR both below and above the canopy using a mobile lightbar platform to predict the potential yield of nut crops. This study proposed a feasible and low-cost method for accurately estimating the canopy fPAR using aerial photogrammetry-based canopy three-dimensional models. We tested up to eight different varieties in three experimental almond orchards, including California's leading variety of ‘Nonpareil’. To extract various canopy profile features, such as canopy cover and canopy volume index, we developed a complete data collection and processing pipeline called Virtual Orchard (VO) in Python environment. Canopy fPAR estimated by VO throughout the season was compared against midday canopy fPAR measured by a mobile lightbar platform in midseason, achieving a strong correlation (R2) of 0.96. A low root mean square error (RMSE) of 2% for ‘Nonpareil’. Furthermore, we developed regression models for predicting actual almond yield using both measures, where VO estimation of canopy fPAR, as a stronger indicator, achieved a much better prediction (R2 = 0.84 and RMSE = 195 lb acre−1) than the lightbar (R2 = 0.70 and RMSE = 266 lb acre−1) for ‘Nonpareil’. Eight different new models for estimating potential yield were also developed using temporal analysis from May to August in 2019 by adjusting the ratio between fPAR and dry kernel yield previously found using a lightbar. Finally, we compared the two measures at two different spatial precision levels: per-row and per-block. fPAR estimated by VO at the per-tree level was also assessed. Results showed that VO estimated canopy fPAR performed better at each precision level than lightbar with up to 0.13 higher R2. The findings in this study serve as a fundamental link between aerial-based canopy fPAR and the actual yield of almonds.

Highlights

  • Photosynthesis is transforming sunlight into chemical energy to support the daily activities of most plants and photosynthetic organisms

  • We suggest that the Virtual Orchard (VO) method offers a more accessible and accurate alternative for estimating canopy fractional PAR (fPAR) than the mobile lightbar platform since the VO model showed a better correlation to actual yield

  • A complete processing pipeline called VO was developed in a Python environment to accurately extract canopy profile features from user-input orchards and user-defined parameters

Read more

Summary

Introduction

Photosynthesis is transforming sunlight into chemical energy to support the daily activities of most plants and photosynthetic organisms. In this process, solar radiation, as the light source, is used to synthesize carbohydrates from water and carbon dioxide (Barnes, 1893). Midday canopy light interception is often defined as the incoming Fractional PAR (fPAR, as a percent) intercepted by a canopy by measuring the PAR both below and above the canopy (McCree, 1966; Lampinen et al, 2012) It indicates actual intercepted PAR (or actual PPFD) that helps growers better understand their orchard productivity and spatial variability (Milne et al, 1992; Rojo et al, 2017)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call