Abstract
Selection of the most representative features is important for any pattern recognition system. This paper investigates the importance of time domain (TD) and frequency domain (FD) features used for automatic food intake detection in a wearable sensor system by using Random Forests classification. Features were extracted from signals collected using 3 different sensor modalities integrated into the Automatic Ingestion Monitor (AIM): a jaw motion sensor, a hand gesture sensor and an accelerometer. Data was collected from 12 subjects wearing AIM in free-living for a 24-hr period where they experienced unrestricted intake. Features from the sensor signals were used to train the Random Forests classifier that estimated the importance of each feature as part of the training process. Results indicated that FD features from the jaw motion signal and TD features from the accelerometer signal were the most relevant features for food intake detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.