Abstract
Accurate estimation of misclassification rates in discriminant analysis with selection of variables by, for example, a stepwise algorithm, is complicated by the large optimistic bias inherent in standard estimators such as those obtained by the resubstitution method. Application of a bootstrap adjustment can reduce the bias of the resubstitution method; however, the bootstrap technique requires the variable selection procedure to be repeated many times and is therefore difficult to compute. In this paper we propose a smoothed estimator that requires relatively little computation and which, on the basis of a Monte Carlo sampling study, is found to perform generally at least as well as the bootstrap method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.