Abstract

Historical buildings are recognized as the valuable cultural heritage of a nation. They may suffer material deterioration unavoidably because of exposure to air pollution. We used geographic information systems with dose-response functions (DRFs) to estimate the corrosion of copper and Portland limestone, and their risk of corrosion with regard to historical buildings in Bangkok, Thailand. The first step was to find a suitable spatial interpolation method considering the air pollution and meteorological measurement data for 2010-2019 from 26 monitoring stations in Bangkok and its neighborhoods. Applying multiple performance measures, the inverse distance weighting (IDW) method was found to be the most suitable. Predictions of the pollutant concentration in the spatial atmosphere showed that the concentration of all pollutants (SO2, NO2, O3, and PM10) tends to increase in 2028. Air pollution exposure time duration tends to be a key factor affecting the corrosion of material. The results of spatial corrosion estimations indicated that in 2010, the corrosion of copper and Portland limestone were at acceptable levels; however, the estimated corrosion levels for 2019 and 2028 are higher and beyond the acceptable levels. Moreover, both materials in the Rattanakosin historical area exceed their tolerable corrosion rates with considerably serious risks in 2028. The results can be further used to establish active measures to reduce the rate of corrosion of historical buildings in Bangkok.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call