Abstract

In recent decades, air pollution has negatively affected human health and the environment. One of the important features contributing to air pollution is called PM2.5. However, daily prediction of PM2.5 is still lacking, especially using feature selection infused into the model. Hence, the main objective of this research is to utilize the feature selection procedures by proposing two stages feature selection methods namely adjusted correlation sharing t-test (adjcorT) and radial basis function neural network (RBFNN) in identifying the important features. This consequently also helps enhance the prediction of daily PM2.5 concentrations. Secondary data were obtained from the Department of Environment Malaysia (DOE) from 2018 until 2022 that consists of 5 years of air pollutant daily data. The results found that adjcorT-RBFNN identified the NO2, PM2.5, PM10, CO, O3, wind speed and SO2 as important features. The finding revealed that the accuracy, sensitivity, specificity, precision, F1 score and AUROC value, for a day-ahead prediction in Shah Alam are 0.756, 0.801, 0.717, 0.717, 0.757, and 0.758 respectively. Additionally, the predicted model may serve as an instrument for an early warning system, providing local authorities with information on air quality for formulation of strategies of air quality improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.