Abstract
Eating disorders (EDs) are common psychiatric disorders associated with high mortality. However, data on ED disease dynamics and treatment coverage are sparse. To model the individual-level disease dynamics of ED from birth to age 40 years and to estimate the association of increased treatment coverage with ED-related mortality. In this decision analytical model study, an individual-level Markov state transition model was empirically calibrated in April 2019 using a Bayesian approach to synthesize available clinical and epidemiologic ED data. The simulation model was calibrated to nationally representative US survey data from 2007 and 2011. A virtual cohort of 100 000 individuals (50 000 [50%] male) was modeled from birth to age 40 years for 4 ED diagnoses: anorexia nervosa, bulimia nervosa, binge eating disorder, and other specified feeding and eating disorders. Age-specific ED incidence and mortality rates and background (all-cause) mortality. The main outcomes were age-specific 12-month and lifetime ED prevalence and number of deaths per 100 000 general population individuals by age 40 years. The mean and 95% uncertainty intervals (UIs) of 1000 simulations, accounting for stochastic and parameter uncertainty, are reported. The highest estimated mean annual prevalence of ED occurred at approximately age 21 years for both male individuals (7.4%; 95% UI, 3.5%-11.5%) and female individuals (10.3%; 95% UI, 7.0%-14.2%), with lifetime mean prevalence estimates increasing to 14.3% (95% UI, 9.7%-19.0%) for male individuals and 19.7% (95% UI, 15.8%-23.9%) for female individuals by age 40 years. Ninety-five percent of first-time cases occurred by age 25 years. Current treatment coverage averts an estimated mean of 41.7 deaths per 100 000 people (95% UI, 13.0-82.0 deaths per 100 000 people) by age 40 years, whereas increasing treatment coverage for all patients with ED could avert an estimated mean of 70.5 deaths per 100 000 people by age 40 years (95% UI, 26.0-143.0 deaths per 100 000 people). In this simulation modeling study, the estimated lifetime prevalence of ED was high, with approximately 1 in 7 male and 1 in 5 female individuals having an ED by age 40 years. The initial onset of EDs was highly concentrated during adolescence and young adulthood, suggesting that this is a critical period for prevention efforts. However, the high estimated prevalence of recurring ED later in life highlights the importance of identification and treatment of ED at older ages as well. These findings suggest that increasing treatment coverage could substantially reduce ED-related mortality.
Highlights
Eating disorders (EDs), including anorexia nervosa (AN), bulimia nervosa (BN), binge eating disorder (BED), and other specified feeding and eating disorders (OSFED), are common psychiatric disorders in the United States, especially among adolescents,[1] and are associated with lower quality of life, increased health care utilization and costs, and high mortality rates.[2,3] the lack of data on ED dynamics across the life course is a major barrier to developing evidence-based strategies for comprehensive ED treatment and prevention
The highest estimated mean annual prevalence of ED occurred at approximately age 21 years for both male individuals (7.4%; 95% uncertainty interval (UI), 3.5%-11.5%) and female individuals (10.3%; 95% UI, 7.0%-14.2%), with lifetime mean prevalence estimates increasing to 14.3% (95% UI, 9.7%-19.0%) for male individuals and 19.7% (95% UI, 15.8%-23.9%) for female individuals by age 40 years
These findings suggest that increasing treatment coverage could substantially reduce ED-related mortality
Summary
Eating disorders (EDs), including anorexia nervosa (AN), bulimia nervosa (BN), binge eating disorder (BED), and other specified feeding and eating disorders (OSFED), are common psychiatric disorders in the United States, especially among adolescents,[1] and are associated with lower quality of life, increased health care utilization and costs, and high mortality rates.[2,3] the lack of data on ED dynamics across the life course is a major barrier to developing evidence-based strategies for comprehensive ED treatment and prevention. Population-level prevalence estimates can mask substantial heterogeneity of individual patient histories. Long-term longitudinal studies that track individual-level ED histories across the life course are likely infeasible and, even if they were undertaken, would take many years to provide information. We developed a microsimulation (ie, individual-level) model to synthesize the best available epidemiologic and clinical ED data in an internally consistent framework. By combining aggregate data on period prevalence and cumulative prevalence at different ages, we constructed and fitted a model of individual-level ED histories consistent with population-level epidemiologic data, which offers insight into person-level events and transitions. The aim of this study is to model the disease dynamics of ED from birth to age 40 years, accounting for heterogeneity, and to estimate the association of ED mortality with increasing treatment coverage
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have