Abstract

In this paper, for the case of the asynchronous switching caused by that subsystem's switching occuring during a sampling interval, the domain of attraction estimation problem is investigated for aperiodic sampled-data switched delayed neural networks (ASDSDNNs) subject to actuator saturation. A parameters-dependent time-scheduled Lyapunov functional consisting of a novel looped-functional is constructed using segmentation technology and linear interpolation. By employing this novel functional and using an average dwell time (ADT) approach, exponential stability criteria are proposed for polytopic uncertain ASDSDNNs subject to actuator saturation. And a relationship between ADT and sampling period is revealed for ASDSDNNs. As a corollary, exponential stability criteria are proposed for nominal ASDSDNNs subject to actuator saturation. Furthermore, by describing the domain of attraction as a time-varying ellipsoid determined by the time-scheduled Lyapunov matrix, the proposed theoretical conditions are transformed into a linear matrix inequality (LMI)-based multi-objective optimization problem. The dynamic estimates of the domain of attraction for ASDSDNNs are solved. Numerical simulation examples are provided to illustrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call