Abstract

Mass unbalance commonly causes vibration of rotor-bearing systems. Lumped mass modeling of unbalance was adapted in most previous research. The lumped unbalance assumption is adequate for thin disks or impellers, but not for thick disks or shafts. Lee et al. (Lee, A. C., et al., 1993, “The Analysis of Linear Rotor-Bearing Systems: A General Transfer Matrix Method,” ASME J. Vib. Acoust., 115, pp. 490–497) proposed that the unbalance of shafts should be continuously distributed. Balancing methods based on discrete unbalance models may not be very appropriate for rotors with distributed unbalance. A better alternative is to identify the distributed unbalance of shafts before balancing. In this study, the eccentricity distribution of the shaft is assumed in piecewise polynomials. A finite element model for the distributed unbalance is provided. Singular value decomposition is used to identify the eccentricity curves of the rotor. Numerical validation of this method is presented and examples are given to show the effectiveness of the identification method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.