Abstract

Over the past decade, artificial neural networks have emerged as fast computational medium for predicting different performance parameters of microstrip antennas due to their learning and generalization features. This paper illustrates a neural network model for instantly predicting the resonance frequencies, gains, directivities, antenna efficiencies, and radiation efficiencies for dual-frequency operation of slotted microstrip antennas with air-gap. The proposed neural model is valid for any arbitrary slot-dimensions and inserted air-gap within their specified ranges. A prototype is fabricated using Roger’s substrate and its performance is measured for validation. A very good agreement is achieved in simulated, predicted, and measured results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.