Abstract
AbstractA continuously calibrated infrared (IR) geostationary satellite rainfall estimation technique (CCB4) is introduced, in the context of the Nile River Forecast System, an operational system for hydrological modelling and forecasting. The CCB4 incorporates near‐real‐time rain gauge data to continuously calibrate optimum IR rain/no‐rain thresholds and daily rain rates on a daily time step. The ability of the CCB4 and two comparative techniques to estimate daily rainfall at the regional and pixel scales is assessed, using Meteosat IR imagery and gauge data from six wet season months covering three years. The CCB4 shows improved skill in identifying rain days and estimating daily rain amounts at a range of spatial scales, from regional to pixel scales. At the pixel scale, however, improved root mean square errors remain relatively high, ranging between 66% and 84% of the mean unconditional rain rate. Copyright © 1999 Royal Meteorological Society
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.