Abstract

While electron-beam (e-beam) lithography is widely employed in the pattern transfer, the proximity effect makes features blurred, and the stochastic nature of the exposure and development processes causes the roughness in the feature boundaries. In an effort to reduce the proximity effect and line edge roughness (LER), it is often necessary to estimate the critical dimension (CD) and LER. In our previous study, the e-beam lithographic process was modeled using the information extracted from SEM images for the estimation of CD and LER. This modeling involves several parameters to be determined and tends to require a long computation time. In this study, the possibility of improving the accuracy of the CD and LER estimation using a neural network (NN) is investigated. In the NN-based estimation, the explicit modeling of the e-beam lithographic process can be avoided. This paper describes the method of estimating the CD and LER using a NN, including the issues of training, tuning, and sample reduction and presents results obtained through an extensive simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.