Abstract

In competing risks data, missing failure types (causes) is a very common phenomenon. In this work, we consider a general missing pattern in which, if a failure type is not observed, one observes a set of possible types containing the true type, along with the failure time. We first consider maximum likelihood estimation with missing-at-random assumption via the expectation maximization (EM) algorithm. We then propose a Nelson-Aalen type estimator for situations when certain information on the conditional probability of the true type given a set of possible failure types is available from the experimentalists. This is based on a least-squares type method using the relationships between hazards for different types and hazards for different combinations of missing types. We conduct a simulation study to investigate the performance of this method, which indicates that bias may be small, even for high proportion of missing data, for sufficiently large number of observations. The estimates are somewhat sensitive to misspecification of the conditional probabilities of the true types when the missing proportion is high. We also consider an example from an animal experiment to illustrate our methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.