Abstract
Major components of lacustrine sediments, such as carbonates, organic matter, and biogenic silica, provide significant paleoenvironmental information about lake systems. Fourier transform infrared spectroscopy (FTIR) and scanning X-ray fluorescence (XRF) techniques are fast, cost effective, efficient methods to determine the relative abundances of these components. We investigate the potential of these techniques using sediments from two large lakes, Lake Malawi in Africa and Lake Qinghai in China. Our results show statistically significant correlations of conventionally measured concentrations of carbonate (%CaCO3), total organic carbon (%TOC), and biogenic silica (%BSi), with absorbance in the corresponding FTIR spectral regions and with XRF elemental ratios including calcium:titanium (Ca/Ti), incoherent:coherent X-ray scatter intensities (Inc/Coh), and silicon:titanium (Si/Ti), respectively. The correlation coefficients (R) range from 0.66 to 0.96 for comparisons of FTIR results and conventional measurements, and from 0.70 to 0.90 for XRF results and conventional measurements. Both FTIR and XRF techniques exhibit great potential for rapid assessment of inorganic and organic contents of lacustrine sediments. However, the relationship between XRF-ratios or FTIR-absorbances and abundances of corresponding sedimentary components can vary with sediment source and lithology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.