Abstract
Hydrosystems in the Saskatchewan River Basin of the Canadian Prairies are subject to natural and socioeconomic pressures. Increasingly, these strong pressures are exacerbating problems of water resource accessibility and depletion. Unfortunately, the geometric heterogeneity of the aquifers and the presence of lithologically varied layers complicate groundwater flow studies, hydrodynamic characterization, and aquifer storativity calculations. Moreover, in recent hydrogeological studies, hydraulic conductivity has been the subject of much more research than storativity. It is in this context that the present research was conducted, to establish a 3D hydrostratigraphic model that highlights the geological (lithology, thickness, and depth) and hydrodynamic characteristics of the aquifer formations and proposes a new uncertainty framework for groundwater storage estimation. The general methodology is based on collecting and processing a very fragmentary and diverse multi-source database to develop the conceptual model. Data were harmonized and entered into a common database management system. A large quantity of geological information has been implemented in a 3D hydrostratigraphic model to establish the finest geometry of the SRB aquifers. Then, the different sources of uncertainty were controlled and considered in the modeling process by developing a randomized modeling system based on spatial random bagging simulation (SRBS). The results of the research show the following: Firstly, the distribution of aquifer levels is controlled by tectonic activity and erosion, which further suggests that most buried valleys on the Prairies have filled over time, likely during multiple glaciations in several depositional environments. Secondly, the geostatistical study allowed us to choose optimal interpolation variographic parameters. Finally, the final storativity maps of the different aquifer formations showed a huge potential of groundwater in SRB. The SRBS method allowed us to calculate the optimal storativity values for each mesh and to obtain a final storativity map for each formation. For example, for the Paskapoo Formation, the distribution grid of groundwater storage shows that the east part of the aquifer can store up to 5920 × 103 m3/voxel, whereas most areas of the west aquifer part can only store less than 750 × 103 m3/voxel. The maximum storativity was attributed to the Horseshoe Canyon Formation, which contains maximal geological reserves ranging from 107 to 111 × 109 m3. The main contribution of this research is the proposed 3D geological model with hydrogeological insights into the study area, as well as the use of a new statistical method to propagate the uncertainty over the modeling domain. The next step will focus on the hydrodynamic modeling of groundwater flow to better manage water resources in the Saskatchewan River Basin.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have