Abstract
A wireless network gives flexibility to the user in terms of mobility that attracts the user to use wireless communication more. The video communication in the wireless network experiences Quality of Services (QoS) and Quality of Experience (QoE) issues due to network dynamics. The parameters, such as node mobility, routing protocols, and distance between the nodes, play a major role in the quality of video communication. Scalable Video Coding (SVC) is an extension to H.264 Advanced Video Coding (AVC), allows partial removal of layers, and generates a valid adapted bit-stream. This adaptation feature enables the streaming of video data over a wireless network to meet the availability of the resources. The video adaptation is a dynamic process and requires prior knowledge to decide the adaptation parameter for extraction of the video levels. This research work aims at building the adaptation parameters that are required by the adaptation engines, such as Media Aware Network Elements (MANE), to perform adaptation on-the-fly. The prior knowledge improves the performances of the adaptation engines and gives the improved quality of the video communication. The unique feature of this work is that, here, we used an experimental evaluation method to identify the video levels that are suitable for a given network condition. In this paper, we estimated the adaptation parameters for streaming scalable video over the wireless network using the experimental method. The adaptation parameters are derived using node mobility, link bandwidth, and motion level of video sequences as deciding parameters. The experimentation is carried on the OMNeT++ tool, and Joint Scalable Video Module (JSVM) is used to encode and decode the scalable video data.
Highlights
Video communication applications, such as video conferencing, telemedicine, video chat, and video-on-demand, are attracting users more and more in this COVID-19 pandemic situation
As video communication is very sensitive to jitter and throughput, it is difficult to achieve Quality of Services (QoS)and Quality of Experience (QoE) in wireless networks
We considered Scalable Video Coding (SVC) an extension to H.264/Advanced Video Coding (AVC) [6], as streaming and adaptation using SVC encoding is still a major research challenge that needs to be addressed
Summary
Video communication applications, such as video conferencing, telemedicine, video chat, and video-on-demand, are attracting users more and more in this COVID-19 pandemic situation. The communication applications involve a wireless network to reach a large number of users and enable seamless communication. Wireless networks provide the flexibility of mobility and ease of use to the users, which increases the streaming challenges and issues in providing better communication quality [1,2]. The recent advances in wireless technology and video coding formats have opened many challenges in real-time video streaming over wireless networks. As video communication is very sensitive to jitter and throughput, it is difficult to achieve Quality of Services (QoS)and Quality of Experience (QoE) in wireless networks. The challenges of providing better quality can be handled with the help of technologies, such as Content-Aware
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have