Abstract

For patients with patterns ranging out of anthropometric standard values, patient-specific musculoskeletal modelling becomes crucial for clinical diagnosis and follow-up. However, patient-specific modelling using imaging techniques and motion capture systems is mainly subject to experimental errors. The aim of this study was to quantify these experimental errors when performing a patient-specific musculoskeletal model. CT scan data were used to personalise the geometrical model and its inertial properties for a post polio residual paralysis subject. After having performed a gait-based experimental protocol, kinematics data were measured using a VICON motion capture system with six infrared cameras. The musculoskeletal model was computed using a direct/inverse algorithm (LifeMod software). A first source of errors was identified in the segmentation procedure in relation to the calculation of personalised inertial parameters. The second source of errors was subject related, as it depended on the reproducibility of performing the same type of gait. The impact of kinematics, kinetics and muscle forces resulting from the musculoskeletal modelling was quantified using relative errors and the absolute root mean square error. Concerning the segmentation procedure, we found that the kinematics results were not sensitive to the errors (relative error < 1%). However, a strong influence was noted on the kinetics results (deviation up to 71%). Furthermore, the reproducibility error showed a significant influence (relative mean error varying from 5 to 30%). The present paper demonstrates that in patient-specific musculoskeletal modelling variations due to experimental errors derived from imaging techniques and motion capture need to be both identified and quantified. Therefore, the paper can be used as a guideline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.