Abstract

The motion capture and force plates data are essential inputs for musculoskeletal multibody dynamics models to predict in vivo tibiotalar contact forces. However, it could be almost impossible to obtain valid force plates data in old patients undergoing total ankle arthroplasty under some circumstances, such as smaller gait strides and inconsistent walking speeds during gait analysis. To remove the dependence of force plates, this study has established a patient-specific musculoskeletal multibody dynamics model with total ankle arthroplasty by combining a foot-ground contact model based on elastic contact elements. And the established model could predict ground reaction forces, ground reaction moments and tibiotalar contact forces simultaneously. Three patients' motion capture and force plates data during their normal walking were used to establish the patient-specific musculoskeletal models and evaluate the predicted ground reaction forces and ground reaction moments. Reasonable accuracies were achieved for the predicted and measured ground reaction forces and ground reaction moments. The predicted tibiotalar contact forces for all patients using the foot-ground contact model had good consistency with those using force plates data. These findings suggested that the foot-ground contact model could take the place of the force plates data for predicting the tibiotalar contact forces in other total ankle arthroplasty patients, thus providing a simplified and valid platform for further study of the patient-specific prosthetic designs and clinical problems of total ankle arthroplasty in the absence of force plates data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.